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24 Abstract 

The field of phylogenetics employs a variety of methods and techniques to study the 

evolution of life across the planet. Understanding evolutionary relationships is crucial to 

enriching our understanding of how genes and organisms have evolved throughout time and how 

they could possibly evolve in the future. Eucopia sculpticauda Faxon, 1893, is a deep-water 

peracarid in the Order Lophogastrida Boas, 1883, which can often be found in high abundances  

in pelagic trawls. The species can be found along the Mariana Trench, in the Mid-Atlantic Ridge, 

west Atlantic and east Pacific Oceans, and in the Gulf of Mexico and as deep as 7,526 meters. 

Recent collections of E. sculpticauda in the Gulf of Mexico have revealed putative cryptic  

diversity within the species based on both molecular and morphological evidence. Previous  

studies have documented two different morphotypes of the telson, the terminal part of the pleon 

(abdomen) and part of the tail fan.  In adults, the morphotypes can be distinguished by lateral 

constrictions in the telson. This evidence, combined with a previous barcoding study, led to 

speculation that telson morphology may be a distinguishing character useful to define cryptic 

diversity within E. sculpticauda. This study presents additional molecular data from the 

mitochondrial genes cytochrome c oxidase subunit I (COI), the large ribosomal subunit (16S), 

and the nuclear histone 3 gene (H3) to investigate telson morphotypes in relationship to 

evolutionary history within this species.  Molecular data identified two strongly supported 

clades, lending support for potential cryptic diversification within the Gulf of 

Mexico. Investigations into telson morphology suggest that this character may be informative, 

but the morphotypes were sometimes ambiguous and additional characters could not be found 

that discriminate clades.  At present, our data suggests early evidence for cryptic diversification 
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46 within Gulf of Mexico populations, but additional morphological characters and geographic  

sampling are needed before a new species can be described. 47 

48 Introduction  

The field of phylogenetics employs a variety of methods and techniques to study the 

evolution of life across the planet.  Most often, these include the use of morphological and/or 

genetic data to establish evolutionary relationships among groups of organisms (Costello et al. 

2013). Understanding these relationships is crucial to help enrich our understanding of 

morphological and genetic differences within and among cryptic species.  As technology and 

methodology have advanced over recent decades, the study of these relationships has become  

more accessible, particularly in the field of molecular phylogenetics.  Molecular phylogenetics 

has the power to identify instances of cryptic diversity, where species are morphologically 

identical or nearly identical but genetically distinct (Knowlton et al. 1993; Bracken-Grissom et 

al. 2014; Novo et al. 2010) and are subject to the reproductive isolation that is necessary to 

facilitate speciation (Coyne and Orr 2004; Yang and Rannala 2012; Kulmuni et al. 2020). 

Previous studies have used molecular phylogenetics to study population differentiation in marine 

species, which might be early indications of speciation events (Duran et al. 2004; Bracken-

Grissom et al. 2014). 

Eucopia sculpticauda (Order Lophogastrida Boas, 1883; Family Eucopiidae G.O. Sars, 

1885; Faxon, 1893) is a bathy- to mesopelagic crustacean with known habitat ranges reaching as 

deep as 7,526 meters, with a global distribution including the Pacific and Indian Oceans, the 

Arctic Circle, and the Gulf of Mexico (Faxon, 1893; Hansen, 1912; Tattersall 1951; Müller, 

1993; Kou et al. 2019) (Figure 1). A previous study using DNA barcoding techniques provided 

evidence for two potentially genetically divergent populations within the Gulf of Mexico (Varela  
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69 et al. 2021). In Varela et al. (2021), six individuals from the northern region of the Gulf of 

Mexico were included and two distinct clades were recovered.  These observations provided an 

opportunity to investigate the species using more genetic data with the addition of a 

morphological investigation. Existing literature on E. sculpticauda is sparse, in part due to its 

extreme and inaccessible habitat, however, it is documented that several morphological  

characters make E. sculpticauda unique. For example, E. sculpticauda does not have reduced 

eyes as seen in the other seven species of Eucopia, and even though most lophogastrids have 

gills on the 8th thoracopod, they are absent in all species of Eucopia except E. sculpticauda 

(Casanova et al. 1998). 

Early descriptions of Eucopia sculpticauda included two morphotypes with variations in 

the shape of the telson (Kathman et al. 1986), defined as the terminal segment of the abdomen 

that makes up the tail fan in combination with the uropods.  It has been stated that juveniles  

possess a telson that is anteriorly broad with an eventual smooth transition to a narrow rounded 

posterior point, identified as “morphotype A” in this study (Figure 2; Figure 3).  As individuals 

of this species age, adults develop two lateral constrictions, giving the telson an “hourglass-like” 

appearance with “honeycomb ridges'', identified as “morphotype B” (Hansen 1912; Kathman et 

al. 1986; Casanova et al. 1998) (Figure 2; Figure 3). In Varela et al. (2021) the clades also 

corresponded to the “A” and “B” morphotypes, which prompted investigation into telson 

morphology and its potential for differentiating cryptic diversity within E. sculpticauda. 

This study investigates telson morphology and cryptic diversity within Eucopia 

sculpticauda. The mitochondrial genes for the cytochrome c oxidase subunit I (COI) and the 

small ribosomal subunit rRNA (16S), and the nuclear histone 3 gene (H3) were used for 

phylogenetic analysis and the resulting topologies were compared against telson morphotypes.  
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92 Our main objective was to increase sampling of E. sculpticauda in an effort to provide further  

and more powerful evidence for cryptic diversity and establish if the lateral constrictions of the 

telson could be used to differentiate a potentially new Eucopia species. This study contributes to 

the understanding of deep-sea biodiversity and highlights the need to combine molecular 

techniques and morphological techniques for identification.  

Materials and Methods  

Specimen Collection  

In this study 56 individuals of Eucopia sculpticauda were included (Supplemental Table 

1). The specimens were collected over the course of six research expeditions into the Gulf of 

Mexico (GOM) with a combined total of 79 days at sea aboard the R/V Point Sur in the northern 

GOM. The expeditions were funded by the Gulf of Mexico Research Initiative (GOMRI) as part  

of the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND) consortium.  

During the DEEPEND expeditions, sampling occurred twice daily at each sampling site:  

once at noon and once at midnight, and each sampling occurred at 0-1,500 Meter (M) depths.  

The expeditions occurred biannually in 2015 and 2016, once in May (regional dry season) and  

once in August (regional wet season), and once per year in May 2017 and May 2018 as ship time 

funding allowed. The DEEPEND expedition employed a six-net Multiple Opening/Closing Net 

and Environmental Sensing System (MOC-10) rigged with six 3-millimeter (mm) mesh trawling 

nets. The system allowed for the opening and closing of each net at discrete depth ranges, 

allowing for collected samples to be separated by the depth range they were collected at (0 - 

200M, 200 - 600M, 600 - 1,000M, 1,000 - 1,200M, 1,200 - 1,500M, with the sixth net sampling 

the water column from 0 - 1,500M).   
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114 After trawl retrieval, specimens from each net were sorted into large trays and identified 

to the lowest taxonomic level, as determined by morphology and dichotomous keys during each 

expedition. After identification, samples were cataloged and preserved in either 70 or 80% 

ethanol, and immediately stored at -20˚C onboard the vessel.  Samples were transported from the  

vessel in Gulfport to the CRUSTOMICS lab on dry ice, where they were stored at -80˚C until 

muscle tissue was plucked from each specimen. The specimens and corresponding tissue 

samples were assigned individual voucher numbers and cataloged into the Florida International 

Crustacean Collection (FICC) database. The specimens were preserved in 80% ethanol and 

stored in the FICC Museum for further molecular and morphological studies.  

Morphological Observations 

The telson of each specimen was examined and measured under a Wild M5 Dissection 

Scope (Wild Heerbrugg, Switzerland) and photographed under a SW-2 Series Super Widefield 

Stereo Microscope with 1.3 MP camera (AmScope, Irvine, CA, USA). Body length 

measurements to the whole millimeter were taken using Mitutoyo CD-8 ASX Digimatic Calipers 

(Mitutoyo Corporation, Kanagawa, Japan). Based on previous descriptions (detailed in Kathman 

et al.1986; Kou et al. 2019) specimens were either determined to be morphotype “A” or 

morphotype “B” if the telson features were distinct and they could confidently be assigned  

without reservation ( i.e. “A” or “B”).  Lower case “a” or “b” were used if the telson features 

were ambiguous and they could not confidently be categorized. The lowercase “a” and “b” 

indicate that they resembled the telson morphology that matches the letter assigned but we could 

not be completely certain.  Interestingly, early studies documented this shape but identified that 

as the “juvenile” form before reaching adulthood (Kathman et al. 1986; Hansen 1912; Casanova 

et al. 1998). To investigate this, every individual in this study was identified as male or female, 
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137 measured, assigned a telson morphotype and checked for sexual maturity. Mature females in the  

order Lophagastrida possess a marsupium pouch formed by seven pairs of plate- like oostegites 

on the thoracopods (Haupt and Ritcher, 2008; Wittman and Ariani, 2010; Meland et al. 2015; 

Castellani et al. 2017). All individuals were examined for the presence of large, thin, angled 

plates with a medial line fringed and setae, that starts from the bases and coxae of the 

thoracopods. Because only the females have the reproductive characters that allowed us to 

assign maturity (i.e. oostegites), males were less informative.  At first, we assumed that all 

individuals that were assigned a telson morphotype of “a” or “b” were juveniles, however some 

did possess oostegites although they were not significantly smaller than those individuals with 

confident telson morphology assignments (“A” or “B”).  Morphological determinations, presence 

of oostegites and body length are documented in Supplemental Table 1. 

DNA Extractions  

  Genomic Deoxyribonucleic acid (gDNA) was extracted from abdominal muscle tissue 

with Qiagen DNeasy® Blood and Tissue Kits (Cat. No. 69504). DNA extraction quality and 

quantity were assessed using 1% gel electrophoresis and a dsDNA High Sensitivity Assay kit 

with a Qubit 2.0 Fluorometer (Invitrogen, Life Technologies, CA, USA), respectively, following 

manufacturers protocols.  DNA extractions were preserved at -20˚C for downstream molecular 

work. 

Sanger Sequencing 

 Three partial genes were selected for phylogenetic analysis based on their reliability in 

resolving taxonomic relationships: the nuclear H3 protein-coding gene, the mitochondrial 

protein-coding gene, COI, and the mitochondrial 16S gene.  Sequencing of the DNA barcoding 

genes, 16S and COI have been used extensively in species identification studies because they are 
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variable enough to detect species level differences (Hebert et al. 2003; Wilson-Wilde et al. 2010; 

Waterborg 2012) with 16S being just as informative as COI in most decapod crustaceans that 

have been studied (Varela et al. 2021). These genes were amplified via PCR using Promega’s 

GoTaq ® Green Master Mix Protocol (Promega, M7122) and primers listed in Table 1.  PCR 

amplifications were performed using a thermal cycler (Pro-Flex PCR system).  Gene fragments 

were amplified using the following thermal profiles: initial denaturing for 2 minutes at 94˚C;  

annealing for 35 cycles: 30 seconds at 95˚C, 30 seconds at 37-57˚C (depending on the gene and 

individual being amplified), 1 minute at 72˚C; final extension 3 minutes at 72˚C, with the 

respective primers for each target gene region.  Details can be found in Table 1. Amplification 

success for all PCRs was verified using 2% gel electrophoresis.  PCR products were sequenced 

through GENEWIZ® Sanger Sequencing services (Genewiz, Boston, MA, USA) to produce 

forward and reverse strand reads.   

New 16S primers were designed for this study (Euco_16S_Rev1, Euco_16S_Rev2, 

Euco_16S_For) due to difficulties in PCR amplification with current universal primers (Table 1).  

These primers were designed using a combination of Eucopia 16S partial gene sequences already 

acquired through Sanger sequencing, mtGenome sequencing, and available sequences published 

on NCBI’s Genbank nucleotide database in May 2019.  These sequences were aligned in 

Geneious Prime v2024.0.3 using the MAFFT E-INS-I with default settings.  Conserved 5’ end 

and 3’ end regions of the alignment were selected for forward and reverse primers, respectively.  

Melting temperatures of the primers were calculated using Oligo Calculator version 3.27.  

Primers were manufactured by Integrated DNA Technologies. All gene sequences used in this 

dataset are publicly available in NCBI’s GenBank Database. 
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183 

184 Phylogenetic Analysis and Pairwise Distances 

 Forward and reverse strands from Sanger sequencing were assembled with the program 

Geneious Prime v2020.0.3, using the de novo assembly function at the “highest sensitivity / 

slow” setting (Kearse et al. 2012), and then trimmed manually. Consensus sequences were 

extracted and screened for pseudogenes and other contamination manually by assessing all six 

reading frames. Consensus sequences for each gene were aligned using MAFFT E-INS-I with 

default settings using Geneious Prime, gaps in the 16S alignment were addressed with Gblocks 

(Castresana 2000). The alignments were 529, 516, and 341 base pairs in length for 16S, COI and 

H3 respectively.  IQtree v2.0.4 was used with the edge-unlinked branch lengths to determine 

models of evolution and to build maximum likelihood (ML) single-gene trees for each gene  

alignment using Rapid Bootstrapping with 10,000 replicates (Nguyen et al. 2014).   

The single-gene alignments were then concatenated using Geneious Prime into a single  

dataset, and one maximum likelihood phylogeny was constructed. For that, IQ-TREE again was 

used to first determine models of evolution, and then using the edge-proportional branch lengths 

as recommended by the user manual for multi-gene analyses, with Rapid Bootstrapping for 

10,000 replicates, and otherwise default  settings. Single gene trees were first constructed to 

examine congruence.  To construct a 16S gene tree, 54 E. sculpticauda individuals were used 

(Supplemental Figure 1). Eucopia unguiculata (Willemoes-Suhm, 1875) and Eucopia grimaldii 

(Nouvel, 1942), were used as the outgroups, as they are closely related Eucopia species (Varela  

et al. 2021) and 16S sequences for them were available in the GenBank database. The COI gene 

tree included 36 E. sculpticauda individuals (Supplemental Figure 2) with Gnathophausia zoea  

(Willemoes-Suhm, 1873), E. unguiculata, E. grimaldii, and Eucopia australis (Dana, 1852), 
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206 selected as the outgroups, because COI sequences for those species were available in the 

GenBank database. In the H3 gene tree, 26 E. sculpticauda individuals were used (Supplemental 

Figure 3) with Cuapetes amymone (De Man, 1902) selected as the outgroup, as it was the closest 

species related to E. sculpticauda with an available H3 sequence. To construct the concatenated 

tree (16S, COI, and H3), 56 individuals of Eucopia sculpticauda were included with G. zoea, E. 

unguiculata, E. grimaldii, and E. australis as the outgroups (Figure 3). 

 Molecular variation of the morphotypes was compared using 16S, COI and H3 sequence 

pairwise distances calculated using p-distance and pairwise deletion of gaps in MEGA ver. 7 

(Kumar et al. 2016). 

Results 

Morphological Characters 

In total, 23 individuals were coded as morphotype “A”, 13 as morphotype “B”, 11 as 

morphotype “a” a nd 9 as morphotype “b”. The data can be found in Supplemental Table 1. 

Pairwise Distances 

The pairwise distances between morphotype “A” and morphotype “B” are 8.7% for 16S, 

7.2% for COI, and 2.8% for H3. See Supplemental material (Supplementary Tables 2, 3, and 4, 

respectively) for comprehensive genetic distance tables. 

Phylogenetic Analyses 

In total, 116 new sequences were generated, 54 for 16S, 36 for COI, and 26 for H3. The 

16S tree recovered two monophyletic groups, with morphotypes “A” and “B” in separate clades 

(Supplemental Figure 1). For COI, 2 clades were recovered, and morphotypes “A” and “B” 

formed two reciprocal monophyletic groups (Supplemental Figure 2). In the H3 tree, as in the 

two other gene trees, 2 monophyletic clades were recovered (Supplemental Figure 3).   
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229  In the concatenated tree Morphotypes “A” and “B” formed two monophyletic groups, 

however only clade “B” was significantly supported by both SH-aLRT and UFBoot analyses 

(97.6 and 100 respectively). Clade “A” is significantly supported by SH-aLRT analysis (96.9) 

(Figure 3).  In all single gene trees and the concatenated trees, telson morphotype “b” appeared 

scattered within both clades, while morphotype “a” was consistently recovered within 

morphotype “A”. 

231 

232 

233 

234 

Discussion 

Cryptic Diversity within Eucopia sculpticauda 

The objective of this study was to investigate cryptic diversity within Eucopia 

sculpticauda using telson morphology and phylogenetics. A previous study that barcoded 82 

different species o f crustaceans, including three species of Eucopia had found preliminary 

evidence for population structure, or potentially cryptic diversity within E. sculpticauda (Varela 

et al. 2021). In this study, six individuals from the northern region of the Gulf of Mexico were 

included and two distinct clades were recovered that corresponded to telson differences, with 

both morphotypes being found sympatrically and across similar depths. Our study recovered 

similar results with the inclusion of significantly more individuals targeted from the same 

geographic region and depth gradients. We consistently recovered two clades based on three 

single gene trees and one concatenated dataset for 16S, COI and H3.  For the phylogeny built  

with the concatenated dataset, two of the clades are significantly supported (Figure 3).  The 

branch lengths found in the concatenated tree reveal the occurrence of cryptic diversity, as the 

lengths for the E. sculpticauda clades are similar to those of other species of Eucopia (E. 

unguiculata and E. australis) that have been studied (Kou et al. 2019; Varela et al. 2021). Often, 

pairwise distances can be calculated to lend support for cryptic diversity, however, it can be 
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252 difficult to assign a precise percentage to speciation as evolutionary rates differ from species to 

species.  In the case of E. sculpticauda, pairwise distances are relatively high, also lending  

evidence for cryptic speciation. For example, COI divergence between the two clades is 7.2 %, 

and COI intraspecies divergence is rarely greater than 2% (Hebert et al. 2003) and comparatively 

in one study it was documented that COI divergence among Eucopia sculpticauda individuals 

was only 0.3% (Kou et al. 2019). 16S divergence was recovered to be 8.7% and interspecies  

divergence for 16S typically falls between 5-20% (Bartos et al. 2024). It is well known that  

nuclear genes are more conserved than mitochondrial genes (Kartavtsev et al. 2018), and the H3 

distance recovered was also substantial (2.8%). Based on the phylogeny and COI pairwise  

distance there is evidence of cryptic diversity within E. sculpticauda. 

Telson Morphology 

It is important that morphological characters be used in combination with molecular 

evidence to discriminate and describe new species. Although scarce, the literature does describe 

some variation in telson morphology in Eucopia (Kathman et al. 1986) and our observations 

based on research cruises and microscopy confirm previous findings.  The original description of 

Eucopia sculpticauda describes the telson as having concave lateral margin much like an 

hourglass and being “beautifully ornamented with a network of ridges like honeycomb” (Faxon, 

1893, morphotype “B”, in this study), which is a character we often use to identify this species.  

However, upon continued examination, we started to see a telson morphology that seemed to 

lack the typical “hourglass” shape, with the lateral margins narrowing, but not concave  

(morphotype “A”, in this study). When we compare telson morphology against the molecular 

phylogeny it seems that a well-developed telson (“A” or “B”) does have phylogenetical 

significance, since morphotype “A” and “B” form reciprocal monophyletic clades.  However, 
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this becomes problematic when telson morphology becomes more ambiguous, such as the case 

for morphotype “b”, which can be found scattered across both clades.  In conclusion, it appears 

that well-developed telson can be used to discriminate cryptic diversity, however this character 

appears unreliable in less developed telsons, and additional morphological characters must be 

investigated before the description of a new species can be completed.  

Conclusions and Recommendations for Future Research 

A combination of both morphological and molecular approaches is useful in 

distinguishing species and populations (Cánovas et al. 2016; Ballou et al. 2021). Evidence from 

this study suggests that a certain degree of cryptic diversity occurs in the Gulf of Mexico for E. 

sculpticauda. However, although well-developed telson morphology may be a good indicator 

for species discrimination, this can be a confusing and ambiguous character, and we conclude 

additional morphological investigation is needed.  To date, our investigations have not revealed a 

reliable morphological character that can be used to discriminate species, but it is possible a 

more vigorous investigation of their morphologies could reveal one.  One limitation to our study 

is that the material was collected using a MOC10 midwater trawl, which often results in animals 

being damaged upon retrieval due to long trawl times and collection of many specimens within 

cod ends. Eucopia sculpticauda are extremely fragile and this method of collection is not ideal  

for detailed morphological investigations, because the individuals can be missing thoracopods or 

other segments that can help with identification. Future sampling should use methods that  

preserve the morphology, which may include tucker trawls. This study highlights the necessity of 

integrating molecular methods, such as phylogenetic analysis, with morphological investigations, 

to accurately assess biodiversity in the deep sea. 
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298 Data are publicly available through the Gulf of Mexico Research Initiative Information & 

Data Cooperative (GRIIDC) https://data.gulfresearchinitiative.org;  

https://doi.org/10.7266/N70P0X3T and doi 10.7266/n7-1xs7-4n30 and on NCBI GenBank. 
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320 Table 1.  Primer pairs and annealing temperatures associated with PCR amplification of genes  

targeted for DNA barcoding of samples. 321 

322 

323 

Target 
Gene 

Forward Primer Reverse Primer Annealing 
Temperature 

16S 16S_Euco_F1 
5'-
GTAAAACGACGGCCAGTGG 
GCTGCAGTATTTTAACTGTG 
C-3' 
(This study) 

16S_Euco_R1 
5'-
CAGGAAACAGCTATGAC 
CCACCGGTCTGAACTCA 
AATCATG-3' 
(This study) 

37-56.1°C 

16S_Euco_R2 
5'-
CAGGAAACAGCTATGAC 
CTCAACATCGAGGTCGC 
AAGC-3' 
(This study) 

37-56.1°C 

COI COI_Crusty_F 
5'-
YTCHWSDAAYCAYAARGAY 
ATTGG-3' 
(Varela et al. 2021) 

COI_Crusty_R 
5'-
TANACYTCNGGRTGNCC 
RAARAAYCA-3' 
(Varela et al. 2021) 

37°C 

H3 H3_aF 
5'-
ATGGCTCGTACCAAGCAGA 
CVGC-3' 
(Colgan et al. 1998) 

H3_aR 
5'-
ATATCCTTRGGCATRATR 
GTGAC-3' 
(Colgan et al. 1998) 

38-40°C 

Figure 1. Lateral view of Eucopia sculpticauda Faxon, 1893 from the Gulf of Mexico. Photo 

Credit: Danté Fenolio. 

Figure 2. Photographs of the telson of Eucopia Sculpticauda Faxon, 1893. A) HBG 8967 

Eucopia sculpticauda Faxon, 1893 (Morphotype “A”) B) HBG 7361 Eucopia sculpticauda  

Faxon, 1893 (Morphotype “B”). 

Figure 3. Maximum-likelihood (ML) phylogeny including 23 individuals of the species Eucopia 

sculpticauda  morphotype “A”, 13 of morphotype “B”, 10 of morphotype “a” and 9 of 

morphotype “b” and outgroup species Gnathophausia zoea (Willemoes-Suhm, 1873), Eucopia 
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331 unguiculata (Willemoes-Suhm, 1875), Eucopia grimaldii (Nouvel, 1942) and Eucopia australis  

(Dana, 1852) based on the mitochondrial genes, 16S and COI, and the nuclear gene, H. 

Shimodaira–Hasegawa-like approximation ratio likelihood test (SH-aLRT) and ultrafast  

bootstrap (UFBoot) values, respectively, indicated on branches. SH-aLRT support values =>80 

and UFB values => 95 indicate strong support. Individuals identified by their voucher number, in 

the Florida International Crustacean Collection (FICC) catalogue number and by their telson 

shape. 

Supplemental Table 1.  Taxonomy, voucher catalog numbers, localities, GenBank (GB) 

accession numbers for gene sequences used in the study, length of individual in millimeters, 

presence of oostegites in specimen, Depth of each sample found in meters (M), and longitude 

and latitude of each sample ; N/A, missing sequence data; GOM, Gulf of Mexico; MAR, Mid 

Atlantic Ridge; EPO, East Pacific Ocean; IPO, indo-Pacific Ocean. 

Supplemental Table 2. Estimates of Evolutionary Divergence between Sequences for the gene 

16S. The number of base substitutions per site from between sequences are shown. Analyses 

were conducted using the Kimura 2-parameter model (Kimura 1980; Kumar et al. 2016). This 

analysis involved 54 nucleotide sequences. 

Supplemental Table 3. Estimates of Evolutionary Divergence between Sequences for the gene 

COI. The number of base substitutions per site from between sequences are shown. Analyses 

were conducted using the Kimura 2-parameter model (Kimura 1980; Kumar et al. 2016). This 

analysis involved 36 nucleotide sequences. 

Supplemental Table 4. Estimates of Evolutionary Divergence between Sequences for the gene 

H3. The number of base substitutions per site from between sequences are shown. Analyses were 
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353 conducted using the Kimura 2-parameter model (Kimura 1980; Kumar et al. 2016). This analysis 

involved 26 nucleotide sequences. 

Supplemental Figure 1. Maximum-likelihood (ML) phylogeny including outgroups (Eucopia 

grimaldii and Eucopia unguiculata), based on the mitochondrial gene 16S, with an alignment 

length of 529 base pairs. The number along the branches represent Shimodaira–Hasegawa-like 

approximation ratio likelihood test (SH-aLRT) and ultrafast bootstrap (UFBoot) values, 

respectively. SH-aLRT support values =>80 and UFB values => 95 indicate strong support. 

Individuals are identified in the tree by their voucher number, which corresponds to their 

identification number in the Florida International Crustacean Collection (FICC), and by their 

telson morphotype. 

Supplemental Figure 2. Maximum-likelihood (ML) phylogeny including outgroups (Eucopia 

grimaldii, Eucopia unguiculata, Eucopia australis, and Gnathophausia zoea) based on the 

mitochondrial gene COI, with an alignment length of 516 base pairs. The number along the 

branches represent Shimodaira–Hasegawa-like approximation ratio likelihood test (SH-aLRT) 

and ultrafast bootstrap (UFBoot) values respectively. SH-aLRT support values =>80 and UFB 

values => 95 indicate strong support. Individuals are identified in the tree by their voucher 

number, which corresponds to their identification number in the Florida International Crustacean 

Collection (FICC), and by their telson morphotype. 

Supplemental Figure 3. Maximum-likelihood (ML) phylogeny including outgroup (Cuapetes 

amymone, De Man, 1902) based on the nuclear gene H3, with an alignment length of 341 base 

pairs. The number along the branches represent Shimodaira–Hasegawa-like approximation ratio  

likelihood test (SH-aLRT) and ultrafast bootstrap (UFBoot) values respectively. SH-aLRT 

support values =>80 indicate strong support. UFB values => 95 indicate strong support. 
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376 Individuals are identified in the tree by their voucher number, which corresponds to their 

identification number in the Florida International Crustacean Collection (FICC), and by their 

telson morphotype. 
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Figure 1. Lateral view of Eucopia sculpticauda Faxon, 1893 from the Gulf of Mexico. Photo Credit: Danté 
Fenolio. 
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Figure 2. Photographs of the telson of Eucopia sculpticauda Faxon, 1893. A) HBG 8967 Eucopia sculpticauda 
Faxon, 1893 (Morphotype “A”) B) HBG 7361 Eucopia sculpticauda Faxon, 1893 (Morphotype “B”). 
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Figure 3. Maximum-likelihood (ML) phylogeny including 23 individuals of the species Eucopia 
sculpticauda  morphotype “A”, 13 of morphotype “B”, 10 of morphotype “a” and 9 of morphotype “b” and 
outgroup species Gnathophausia zoea (Willemoes-Suhm, 1873), Eucopia unguiculata (Willemoes-Suhm, 
1875), Eucopia grimaldii (Nouvel, 1942) and Eucopia australis (Dana, 1852) based on the mitochondrial 

genes, 16S and COI, and the nuclear gene, H. Shimodaira–Hasegawa-like approximation ratio likelihood test 
(SH-aLRT) and ultrafast bootstrap (UFBoot) values, respectively, indicated on branches. SH-aLRT support 

values =>80 and UFB values => 95 indicate strong support. Individuals identified by their voucher number, 
in the Florida International Crustacean Collection (FICC) catalogue number and by their telson shape. 
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